已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y轴正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.
如图,在四边形中,E、F、G、H分别是、、、的中点. (1)请判断四边形的形状.并说明为什么? (2)若使四边形为正方形,那么四边形的对角线应具有怎样的性质?
在梯形中,∥,,为中点. (1)求证:≌.(2)若平分,且,求的长.
如图,在中,,为中点,四边形是平行四边形.求证:四边形是矩形.
已知:如图,、是□的对角线上的两点,. 求证:(1);(2)∥.
如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F. (1)求证:△BOE≌△DOF; (2)当EF与AC满足什么条件时四边形AECF是菱形,并证明你的结论.