如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.(1)求证:AB⊥平面PBC;(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;(3)在(2)的条件下,求二面角C-PA-B的余弦值.
某厂采用新技术改造后生产甲产品过程中记录的产量x(吨)与相应的成本y(万元)的几组对照数据.
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+; (3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元? (参考数据:,)
设关于的一元二次方程. (1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有两个不等实根的概率. (2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
设函数 (1)求函数的最小值; (2)设,讨论函数的单调性; (3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.
已知函数, (1)若的一个极值点为1,求a的值; (2)设在上的最大值为,当时,恒成立,求a的取值范围.
如图:四棱锥中,底面是平行四边形,且,,,,点是的中点,点在边上移动. (1)证明:当点在边上移动时,总有; (2)当等于何值时,与平面所成角的大小为45°.