如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100 米.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.(1)求气球的高度(结果精确到0.1米);(2)求气球飘移的平均速度(结果保留3个有效数字).
已知=2+,=2-,求的值.
用适当的方法解下列方程: (1) (2)
如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象. (1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围; (2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
如图,在梯形中,为的中点,交于点. (1)求证:; (2)当,且平分时,求的长.