在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1. (1)求a的值;(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m的取值范围.
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连结EF(保留作图痕迹,不要求写作法、证明).(2)若线段AC= 8,BC= 12,求线段EF的长.
先化简,再求值:,其中x=2sin60°+1.
如图,在□ABCD中,,.点由出发沿方向匀速运动,速度为;同时,线段由出发沿方向匀速运动,速度为,交于,连接、.若设运动时间为(s)().解答下列问题:(1)当为何值时,∥?并求出此时的长;(2)试判断△的形状,并请说明理由.(3)当时,(ⅰ)在上述运动过程中,五边形的面积 ▲ (填序号)①变大 ②变小 ③先变大,后变小 ④不变(ⅱ)设的面积为,求出与之间的函数关系式及的取值范围.
如图,△ABC中,点O在边AB上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD,交直线OD于点E。(1)求证:OE=OD ;(2)当点O在什么位置时,四边形BDAE是矩形?说明理由;(3)在满足(2)的条件下,还需△ABC满足什么条件时,四边形BDAE是正方形?写出你确定的条件,并画出图形,不必证明。
甲、乙两车同时从地出发,以各自的速度匀速向地行驶.甲车先到达地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象.(1)两车行驶3小时后,两车相距 ▲ 千米;(2)请在图中的( )内填上正确的值,并直接写出甲车从到的行驶速度;(3)求从甲车返回到与乙车相遇过程中与之间的函数关系式,并写出自变量的取值范围.(4)求出甲车返回时的行驶速度及、两地之间的距离.