如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ) 当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ) 设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
已知二次函数满足,且, (1)求; (2)求在上的最大值和最小值。
设函数 (1)将f(x)写成分段函数,在给定坐标系中作出函数的图像; (2)解不等式f(x)>5,并求出函数y= f(x)的最小值。
⊙O1和⊙O2的极坐标方程分别为。 (1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2交点的直线的直角坐标方程。
已知f(x)=2x3+ax2+bx+c在x=-1处取得极值8,又x=2时,f(x) 也取得极值。 (1)求a,b,c的值,写出f(x)的解析式; (2)求f(x)的单调区间。
已知c>0.设命题P:函数y=cx在R上单调递减;Q: 函数在上恒为增函数.若P或Q为真,P且Q为假,求c的取值范围。