某高校在2013年考试成绩中100名学生的笔试成绩的频率分布直方图如图所示,(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率;② 若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为,设第三组中被抽中的学生有名获得优秀,求的分布列和数学期望。
如图,在平面直角坐标系中,点A在轴的正半轴上,直线AB的倾斜角为,设. (Ⅰ)用表示点的坐标及||; (Ⅱ)若的值.
设向量=,=,其中,,已知函数·的最小正周期为. (Ⅰ)求的值; (Ⅱ)若是关于的方程的根,且,求的值.
记函数的定义域为集合A,函数的定义域为集合B. (Ⅰ)求集合; (Ⅱ)若,求实数的取值范围.
选修:不等式选讲 已知函数,且恒成立. (Ⅰ)求实数的最大值; (Ⅱ)当取最大值时,求不等式的解集.
选修;坐标系与参数方程 在直角坐标系中,直线的参数方程为(为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使. (Ⅰ)求点轨迹的直角坐标方程; (Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.