已知函数 .(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x+y+1=0平行,求a的值;(Ⅱ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;(Ⅲ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.
在△ABC中,角A、B、C的对边分别为a、b、c,满足(c-2a)cosB+bcosC=0 (1)求角B的大小; (2)若a=2,cosA=,求c的值
(本题16分)已知方程x2+y2-2x-4y+m=0. (1)若此方程表示圆,求的取值范围; (2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OMON(O为坐标原点)求m的值; (3)在(2)的条件下,求以MN为直径的圆的方程.
如图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为S. (Ⅰ)当的长度是多少时,S最小?并求S的最小值. (Ⅱ)要使S不小于平方米,则的长应在什么范围内?
(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点. (1)求证:B1D1∥面EFG (2)求证:平面AA1C⊥面EFG.
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12. (1)求数列{an}的通项公式; (2)令bn= an3n,求{bn}的前n项的和Tn.