首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 填空题
  • 难度 容易
  • 浏览 1492

对于三次函数,定义的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中正确命题的序号为__ __(把所有正确命题的序号都填上).

登录免费查看答案和解析
相关知识点

对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点