如图,宝应生态园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、……,某人在河岸MN的A处测得∠DAN=21º,然后沿河岸走了175米到达B处,测得∠CBN=45º,求这条河的宽度. (参考数据:,)
如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C. (1)试判断线段AB与AC的数量关系,并说明理由; (2)若PC=2,求⊙O的半径和线段PB的长; (3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B. (1)求此抛物线的解析式及顶点坐标; (2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式; (3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P. (1)求证:AM=AN; (2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示: 若每人组装同一种型号玩具的速度都相同,根据以上信息,解答下列问题: (1)从上述统计图可知,A 型玩具、B型玩具、C型玩具各组装多少套? (2)若每人组装A型玩具16套与组装C型玩具12套所用的时间相同,求a的值.
观察下列方程及其解的特征: (1)x+=2的解为x1=x2=1; (2)x+=的解为x1=2,x2=; (3)x+=的解为x1=3,x2=; … 解答下列问题: (1)请猜想:方程x+=的解为x1=,x2=; (2)请猜想:关于x的方程x+=的解为x1=a,x2=(a≠0); (3)下面以解方程x+=为例,验证(1)中猜想结论的正确性. 解:原方程可化为5x2-26x=-5. (下面请大家用配方法写出解此方程的详细过程)