若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(Ⅰ)求的极值;(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
在中,角A、B、C所对的边分虽为,且 (1)求的值; (2)求的值; (3)求的值。
已知函数 (1)若,求曲线处的切线; (2)若函数在其定义域内为增函数,求正实数的取值范围; (3)设函数上至少存在一点,使得成立,求实数的取值范围。
如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点, (1)求证:; (2)当E是棱CC1中点时,求证:CF//平面AEB1; (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
为了探究患慢性气管炎与吸烟有无关系,调查了却名岁以上的人,结果如下表所示,据此数据请问:岁以上的人患慢性气管炎与吸烟习惯有关系吗?
关于某设备的使用年限和所支出的维修费用(万元),有如 下的统计资料:
如由资料可知对呈线形相关关系,试求: (1)线形回归方程; (2)估计使用年限为年时,维修费用是多少?