若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(Ⅰ)求的极值;(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题满分12分)从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告. (1)若每个大项中至少选派一人,则名额分配有几种情况? (2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
(本小题满分10分)设, 且是实数,且.(1)求的值及的实部的取值范围;(2)设,求证:为纯虚数;
(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列的前项和为,且,(1)若,求数列的前项和;(2)若,,求证:数列为等比数列,并求出其通项公式;(3)记,若对任意的,恒成立,求实数的取值范围.
(本题满分16分,第1小题4分,第2小题7分,第3小题5分)如图,射线所在的直线的方向向量分别为,,点在内,于,于;(1)若,,求的值;(2)若,的面积为,求的值;(3)已知为常数,的中点为,且,当变化时,求动点轨迹方程;
(本题满分14分,第1小题6分,第2小题8分)已知函数的反函数为(1)若,求实数的值;(2)若关于的方程在区间内有解,求实数的取值范围;