围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元)(1)将y表示为x的函数(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
(本小题满分14分)已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若在上是单调函数,求的取值范围.
(本小题满分13分)在递减的等比数列中,设为其前项和,已知,. (Ⅰ)求,; (Ⅱ)设,试比较与的大小关系,并说明理由.
(本小题满分13分)如图,在△中,为钝角,.为延长线上一点,且. (Ⅰ)求的大小; (Ⅱ)求的长及△的面积.
(本小题满分13分)已知函数()的图象经过点. (Ⅰ)求函数的解析式; (Ⅱ)求函数的最小正周期和单调递减区间.
已知椭圆C :上点到两焦点的距离和为,短轴长为,直线l与椭圆C交于M、 N两点. (Ⅰ)求椭圆C方程; (Ⅱ)若直线MN与圆O :相切,证明:为定值; (Ⅲ)在(Ⅱ)的条件下,求的取值范围.