已知向量,定义函数(Ⅰ)求函数最小正周期;(Ⅱ)在△ABC中,角A为锐角,且,求边AC的长.
在数列中,,且对任意的都有. (1)求证:是等比数列; (2)若对任意的都有,求实数的取值范围.
某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响. (1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望; (2)请分析比较甲、乙两考生的实验操作能力.
如图,在长方体中,点在棱上. (1)求异面直线与所成的角; (2)若二面角的大小为,求点到面的距离.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①; ②; ③; ④; ⑤. (1)从上述五个式子中选择一个,求出常数; (2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
定义:若数列对任意,满足(为常数),称数列为等差比数列. (1)若数列前项和满足,求的通项公式,并判断该数列是否为等差比数列; (2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由; (3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.