运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油升,司机的工资是每小时30元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.
已知数列的前项和,数列满足. (Ⅰ)求数列的通项;(Ⅱ)求数列的通项; (Ⅲ)若,求数列的前项和.
设函数在及时取得极值. (1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围.
已知椭圆()的右焦点为,离心率为. (Ⅰ)若,求椭圆的方程; (Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
已知函数. (Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为. (1)求抛物线的方程; (2)当的角平分线垂直轴时,求直线的斜率; (3)若直线在轴上的截距为,求的最小值.