某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两个点,EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06/cm2元,当⊙O1的半径为多少时,该玩具成本最小?
如图,一抛物线经过点A、B、C,点 A(−2,0),点B(0,4),点C(4,0),该抛物线的顶点为D. (1)求该抛物线的解析式及顶点D坐标; (2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标; (3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.
如图,菱形ABCD中,对角线AC、BD交于点O,点P在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m°<180º) 得线段PQ. (1)当点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹); (2)若点Q落在边CD上(C点除外),且∠ADB=n°. ①探究m与n之间的数量关系; ②当点P在线段OB上运动时,存在点Q,使PQ=QD,直接写出n的取值范围.
某黄金珠宝商店,今年4月份以前,每天的进货量与销售量均为1000克,进入4月份后,每天的进货量保持不变,因国际金价大跌走熊,市场需求量不断增加.如图是4月前后一段时期库存量(克)与销售时间(月份)之间的函数图象. (4月份以30天计算)
(1)该商店月份开始出现供不应求的现象,4月份的平均日销售量为克? (2)为满足市场需求,商店准备投资20万元同时购进A、B两种新黄金产品。其中购买A、B两种新黄金产品所投资的金额与销售收入存在如图所示的函数对应关系. 请你判断商店这次投资能否盈利? (3)在(2)的其他条件不变的情况下,商店准备投资m万元同时购进A、B两种新黄金产品,并实现最大盈利3.2万元,请求出m的值.(利润=销售收入-投资金额)
如图(1)是某种台灯的示意图,灯柱BC固定垂直于桌面,AB是转轴,可以绕着点B按顺时针方向转动,AB=10cm,BC=20cm,圆锥形灯罩的轴截面△APQ是等腰直角三角形,∠PAQ=90°,且PQ∥AB.转动前,点A、B、C在同一直线上. (1)转动AB,如图(2)所示,若灯心A到桌面的距离AM=25cm,求∠ABC的大小; (2)继续转动AB,当光线AP第一次经过点C,求此时灯心A到桌面的距离AM长.(假设桌面足够大)
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字−1,−2和−3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=-x−1上的概率.