某地区一厂工业废气排放量为450万立方米,为改善该地区的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米.如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元.问两期治理完成后共需投入多少万元?
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元; (2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?
如图,在平面直角坐标系中,O是原点,已知A(4,3),P是y轴上的动点,当点O,A,P 三点组成的三角形为等腰三角形时,求出所有符合条件的点P坐标.
如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE. 求证:(1)△AEF≌△CEB; (2)AF=2CD.
△ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-2). (1)在直角坐标系中画出△ABC; (2)把△ABC向左平移4个单位,再向上平移5个单位,恰好得到三角形△A1B1C1, 试写出△A1B1C1三个 顶点的坐标,并在直角坐标系中描出这些点; (3)求出△A1B1C1的面积.
画出一次函数的图像,并求函数图像与两坐标轴所围成的三角形面积.