如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.⑴ 求证:AB是⊙O的切线; ⑵ 若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.
如图,正方形中,点F在边BC上,E在边BA的延长线上.(1)若按顺时针方向旋转后恰好与重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若,求四边形的面积.
如图,在中,AB是的直径,与AC交于点D,,求的度数;
解方程:.
某射击运动员在相同条件下的射击160次,其成绩记录如下:
(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.
阅读下列材料,并回答问题.画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且。事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。如果直角三角形中,两直角边长分别为a、b,斜边长为c,则,这个结论就是著名的勾股定理.请利用这个结论,完成下面的活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为 .(2)满足勾股定理方程的正整数组(a,b,c)叫勾股数组。例如(3,4,5)就是一组勾股数组。观察下列几组勾股数 ① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ; 请你写出有以上规律的第⑤组勾股数: .(3)如图,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的长度.(4)如图,点A在数轴上表示的数是 ,请用类似的方法在下图数轴上画出表示数的B点(保留作图痕迹).