如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.⑴ 求证:AB是⊙O的切线; ⑵ 若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.
(本题满分9分)将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.
(本题满分8分)已知a=2+,b=2-,试求的值.
8分)已知:关于x 的一元二次方程的两根满足,双曲线(x>0)经过Rt△OAB斜边OB的中点D,与直角边AB交于C(如图),求.
2010年,世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题:(1)求出这10天持票入园人数的平均数、中位数和众数;(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过30万人的有多少天?
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.