如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.⑴ 求证:AB是⊙O的切线; ⑵ 若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.
(本题8分)某校学生会为了了解学生上网时间情况,从全校3600名学生中随机选取一部分学生进行调查.调查时将每周上网时间情况分为:A:上网时间≤1小时;B:1小时<上网时间≤4小时;C:4小时<上网时间≤7小时;D:上网时间>7小时.根据统计结果制成了如下统计图:(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校每周上网不超过7小时的学生人数.
(本题8分)求一元一次不等式组的解集,并将解集在数轴上表示.
(本题6分)化简求值:,其中
(本题3+3+4+4分)如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C,(1)求抛物线的表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当,请直接写出线段BM的长。
(本题2+3+3+4分)如图1,点A是反比例函数(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个反比例函数(k<0,x<0)的图象于点B.(1)若S△AOB=3,则k=______;(2)当k=-8时:①若点A的横坐标是1,求∠AOB的度数;②将①中的∠AOB绕着点O旋转一定的角度,使∠AOB的两边分别交反比例函数y1、y2的图象于点M、N,如图2所示.在旋转的过程中,∠OMN的度数是否变化?并说明理由;(3)如图1,若不论点A在何处,反比例函数(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.