以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。(I)求直线的参数方程和圆C的极坐标方程;(II)试判定直线与圆C的位置关系。
(本小题满分12分)已知数列{}满足,且点在函数的图象上,其中=1,2,3,….(Ⅰ)证明:数列{lg(1+)}是等比数列;(Ⅱ)设=(1+)(1+)…(1+),求及数列{}的通项.
(本小题满分12分)某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者.(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望.(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
(本小题满分10分)已知函数的周期为(Ⅰ)求ω的值和函数的单调递增区间;(Ⅱ)设△ABC的三边、、满足,且边所对的角为,求此时函数的值域.
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间.(3)当x∈时,求f(x)的值域.
设两个非零向量e1、e2不共线.如果=e1+e2,2e1+8e2,="3(e1-e2)" ⑴求证: A、B、D三点共线. ⑵试确定实数k,使ke1+e2和e1+ke2共线.