如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形(3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.
如图,△ACB和△ECD都是等腰直角三角形,A、C、D三点在同一直线上,连接BD、AE,并延长AE交BD于F. (1)求证:△ACE≌△BCD; (2)直线AE与BD互相垂直吗?请证明你的结论.
如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M. (1)求证:△ABQ≌△CAP; (2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数. (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
已知点O到的两边AB、AC所在直线的距离相等,且OB=OC. (1)如图1,若点O在边BC上,求证:AB=AC; (2)如图2,若点O在的内部,求证:AB=AC; (3)若点O在的外部,AB=AC成立吗?请画图表示.
某市的A地和B地秋季育苗,急需化肥分别为90吨和60吨,该市的C地和D地分别储存化肥100吨和50吨,全部调配给A地和B地,已知从C、D两地运化肥到A、B两地的运费(元/吨)如下表所示 (1)设C地运到A地的化肥为吨,用含(吨)的代数式表示总运费W(元) (2)求最低总运费,并说明总运费最低时的运送方案 (3)若总运费不少于5680元,共有几种方案?(化肥吨数取整数)
如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,连接AD. 求证:(1)∠FAD=∠EAD;(2)BD=CD.