如图,防洪大堤的横断面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求小明到电线杆的距离和髙压电线杆CD的髙度(结果保留根号).
在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.
甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.
如图,在正方形ABCD中,点E是对角线BD上的点,求证:△ABE≌△CBE.
如图,是一个运算流程. (1)分别计算:当x=150时,输出值为 ,当x=27时,输出值为 ; (2)若需要经过两次运算,才能运算出y,求x的取值范围; (3)请给出一个x的值,使之无论运算多少次都不能输出,并请说明理由.
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.