如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ) 求证:平面平面;(Ⅱ) 当,且时,确定点的位置,即求出的值.
在直角坐标系中,参数方程为的直线,被以原点为极点,轴的正半轴为极轴,极坐标方程为的曲线所截,求截得的弦长.
变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是. (Ⅰ)求点在作用下的点的坐标; (Ⅱ)求函数的图象依次在,变换的作用下所得曲线的方程.
在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N,且BN2AM. 求证:ABAC.
已知是正数, ,,. (1)若成等差数列,比较与的大小; (2)若,则三个数中,哪个数最大,请说明理由; (3)若,,(),且,,的整数部分分别是求所有的值.
已知函数,. (1)若,则,满足什么条件时,曲线与在处总有相同的切线? (2)当时,求函数的单调减区间; (3)当时,若对任意的恒成立,求的取值的集合.