如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,求出对应的点P的坐标.
某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图. 根据统计图中的信息,解答下列问题: (1)求本次被调查的学生人数,并补全条形统计图; (2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数; (3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.
如图,在中,点是的中点,连接并延长,交的延长线于点F. 求证:.
解方程:.
某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费. (1)设纪念册的册数为x,甲公司收费用表示,乙公司收费用表示,分别写出两家公司的收费与纪念册册数的关系; (2)当纪念册的册数是多少时,两家公司的收费是一样的? (3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?(就纪念册的册数讨论)
一个长方形足球场的长为xcm,宽为70m,如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛? (注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)