如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,求出对应的点P的坐标.
忻州有“秀容古城”之称,某校就同学们对“忻州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图: 根据统计图的信息,解答下列问题: (1)本次共凋查 名学生,条形统计图中m= ; (2)若该校共有学生1000名,则该校约有 名学生不了解“忻州历史文化”; (3)调查结果中,该校八年级(2)班学生中了解程度为“很了解”的同学是两名男生、一名女生,现准备从其中随机抽取两人去市里参加“忻州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.
如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm. (1)求证:AC是⊙O的切线; (2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.请你在图1、图2中各画出一个直角三角形,使所画两直角三角形的形状不同(另一顶点为小正方形的顶点).
(1)计算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°. (2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.
如图,在平面直角坐标系xoy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴. (1)求抛物线的解析式; (2)若两动点M、H分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头,并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.