已知数列满足,其中N*.(Ⅰ)设,求证:数列是等差数列,并求出的通项公式;(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
为适应2012年3月23日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,某驾校将小型汽车驾照考试科目二的培训测试调整为:从10个备选测试项目中随机抽取4个,只有选中的4个项目均测试合格,科目二的培训才算通过.已知甲对10个测试项目测试合格的概率均为;乙对其中8个测试项目完全有合格把握,而另2个测试项目却根本不会.(Ⅰ)求甲恰有2个测试项目合格的概率;(Ⅱ)记乙的测试项目合格数为,求的分布列及数学期望.
如图,三棱柱侧棱与底面垂直,且所有棱长都为4,D为CC1中点.(1)求证:;(2)求二面角的余弦值.
若(,,已知点,是函数图象上的任意两点,若时,的最小值为,且函数为奇函数.(Ⅰ)求的值;(Ⅱ)将函数的图象向右平移个单位后,得到函数的图象,求函数的单调递增区间.
已知函数.(1)解不等式;(2)若,求证:
(本小题满分10分)选修4-4:坐标系与参数方程极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同. 已知曲线C的极坐标方程为,斜率为的直线交y轴于点.(1)求C的直角坐标方程,的参数方程;(2)直线与曲线C交于A、B两点,求.