已知函数.(1)解不等式;(2)若,求证:
圆的切线与轴正半轴,轴正半轴围成一个三角形,当该三角形面积最小时,切点为(如图),双曲线过点且离心率为. (1)求的方程; (2)椭圆过点P且与有相同的焦点,直线过的右焦点且与交于两点,若以线段为直径的圆心过点,求的方程.
如图,和所在平面互相垂直,且,,分别为的中点. (1)求证:; (2)求二面角的正弦值.
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示: 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率; (2)用 X 表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望 E X 及方差 D X .
在 ∆ A B C 中,内角 A , B , C 的对边 a , b , c ,且 a > c ,已知 B A ⇀ · B C ⇀ = 2 , c o s B = 1 3 , b = 3 ,求: (1) a 和 c 的值; (2) cos B - C 的值.
已知常数,函数. (1)讨论在区间上的单调性; (2)若存在两个极值点,且,求的取值范围.