设.(Ⅰ)求的最大值及最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,锐角A满足,,求的值.
)求证:(1)(2)
一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花. (1)如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法? (2)如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
已知. 求证:当为偶数时,能被整除.
在二项式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项. (1)求它是第几项; (2)求的范围.
已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.