如图3,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大? (图3)
已知圆心角为120° 的扇形AOB半径为,C为 中点.点D,E分别在半径OA,OB上.若CD2+CE2+DE2=2,则OD+OE的最大值是 .
如图,椭圆C:的焦点在x轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C2分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.(1)求椭圆C及抛物线C1、C2的方程;(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N,已知点,求的最小值.
若,且.(1)求的最小值及对应的x值;(2)若不等式的解集记为A,不等式的解集记为B,求.
已知数列{bn}的前n项和.数列{an}满足,数列{cn}满足.(1)求数列{an}和数列{bn}的通项公式;(2)若对一切正整数n恒成立,求实数m的取值范围.
已知函数的图象在以点为切点的切线的倾斜角为.(1)求m、n的值;(2)求函数在上的最大值和最小值.