已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.(Ⅰ)求点T的横坐标;(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.① 求椭圆C的标准方程;② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.
(本小题满分12分)已知函数,将的图像向左平移个单位后得到的图像,且在区间内的最大值为. (1)求实数的值; (2)在中,内角、、的对边分别是,若,且,求的周长的取值范围.
(本小题共13分)将这个数随机排成一列,得到的一列数称为的一个排列.定义为排列的波动强度. (Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度; (Ⅱ)当时,求的最大值,并指出所对应的一个排列.
(本小题满分14分)已知椭圆:的上顶点为,两个焦点为、,为正三角形且周长为6. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知圆:,若直线与椭圆只有一个公共点,且直线与圆相切于点;求的最大值.
(本小题满分13分)已知函数,其中为常数,且. (Ⅰ)若曲线在点(1,)处的切线与直线垂直,求的值; (Ⅱ)若函数在区间[1,2]上的最小值的表达式.
(本小题满分13分)从含有两件正品和一件次品的3件产品中,每次任取1件 (Ⅰ)每次取出后不放回,连续取两次,求取出的产品中恰有一件次品的概率; (Ⅱ)每次取出后放回,连续取两次,求取出的产品中恰有一件次品的概率.