已知点,,动点的轨迹曲线满足,,过点的直线交曲线于、两点.(1)求的值,并写出曲线的方程;(2)求△面积的最大值.
如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1, ,数列满足,(Ⅰ)求函数的单调区间;(Ⅱ)求证:0<<<1;(Ⅲ)若且<,则当n≥2时,求证:>
已知函数.(Ⅰ)求的单调区间和极值;(Ⅱ)当时,不等式恒成立,求的范围.
斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.