已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
(本小题满分12分)在中,,,是角,,的对边,若,且,(1)求的面积;(2)若,求和的值.
(本小题满分12分)已知二次函数满足条件,及。(1)求函数的解析式;(2)求在上的最值。
已知是定义在[-1,1]上的奇函数,当,且时有.(1)判断函数的单调性,并给予证明;(2)若对所有恒成立,求实数m的取值范围.
某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
(1)已知集合,是否存在实数使?若存在,求出的取值范围;若不存在,请说明理由;(2)若集合,是否存在实数使?若存在,求出的取值范围;若不存在,请说明理由.