如图,椭圆的顶点为,焦点为,. (Ⅰ)求椭圆C的方程;(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.
(本小题满分14分)已知函数() (1) 判断函数的单调性; (2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足. (1) 当t变化时,求点P的轨迹方程; (2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,求直线BC的方程.
如图,给出四棱锥P-ABCD的直观图及其三视图 (1)、据此说明四棱锥P-ABCD具有的特征及已知条件;(2)、由你给出的特征及条件证明:面PAD⊥面PCD(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.
(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为 (1)求的解析式; (2)若把图象按向量平移,得到函数的图象,求的单调增区间.
已知方程;(1)若此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于、两点且(为坐标原点),求的值。