袋子中装有三个完全相同的球,分别标有:“1”“2”“3”,小颖随机从中摸出一个球不放回,并以该球上的数字作为十位数;小颖再摸一个球,以该球上的数字作为个位数,那么,所得数字是偶数的概率是多少?(要求画出树状图或列出表格进行解答.)
先化简,再求值其
如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转180°后得到Rt△BCO,BO、CO恰好分别在y轴、x轴上.再将Rt△BCO沿y轴对折得到Rt△BDO.取BC中点F,连接DF,交AB于点G,将△BDG沿DF对折得到△KDG.直线DK交AB于点H.填空:CE:ED=________,AB:AC=__________;若BH=,求直线BD解析式在(2)的条件下,一抛物线过点D、点E、点B,此抛物线位于直线BD上方有一动点Q,△BDQ的面积有无最大值?若有,请求出点Q的坐标;若无,请说明理由
如图,AB、ED是⊙O的直径,点C在ED延长线上, 且∠CBD =∠FAB.点F在⊙O上,且 AB⊥DF.连接AD并延长交BC于点G.求证:BC是⊙O的切线;求证:BD·BC=BE·CD;若⊙O 的半径为r,BC=3r,求tan∠CDG的值
阅读材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值. 解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0, 又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:()2-()-1=0 , 根据p2-p-1=0和()2-()-1=0的特征, p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+=1,所以=1. 根据以上阅读材料所提供的方法,完成下面的解答:已知m2-5mn+6n2=0,m>n,求的值已知2m2-5m-1=0,()2+-2=0,且m≠n ,求的值.