在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,(1)根据以上数据建立一个的列联表;(2)能否在犯错误的概率不超过0.05的前提下认为晕机与性别有关?
(本小题10分)已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于点N. (Ⅰ)求证:当l与m垂直时,l经过圆心C; (Ⅱ)当=2时,求直线l的方程; (Ⅲ)请问:是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.
(本小题12分)如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得. (Ⅰ)求证:AE⊥平面CDE; (Ⅱ)求证:FG∥平面BCD; (Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB, 并说明理由.
(本小题12分)已知平行四边形的三个顶点的坐标为,,. (Ⅰ)在ABC中,求边AC中线所在直线方程; (Ⅱ)求平行四边形的顶点D的坐标及边BC的长度; (Ⅲ)求的面积.
(本小题10分)在长方体中,底面为正方形,分别为棱的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面⊥平面
已知函数是奇函数(且). ①求实数的值; ②判断在区间上的单调性,并加以证明; ③当且时,的值域是,求实数与的值.