(文科只做(1)(2)问,理科全做)设是函数图象上任意两点,且,已知点的横坐标为,且有,其中且n≥2,(1) 求点的纵坐标值;(2) 求,,及; (3)已知,其中,且为数列的前n项和,若对一切都成立,试求λ的最小正整数值。
已知函数的两条切线PM、PN,切点分别为M、N.(I)当时,求函数的单调递增区间;(II)设|MN|=,试求函数的表达式;(III)在(II)的条件下,若对任意的正整数,在区间内总存在成立,求m的最大值.
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
已知函数的图象在点M(-1,f(-1))处的切线方程为x+2y+5=0.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间.
设的内角所对的边长分别为,.(Ⅰ)求的值;(Ⅱ)求的最大值.
已知各项都不相等的等差数列的前六项和为60,且的等比中项. (I)求数列的通项公式;(II)若数列的前n项和Tn.