如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的极值.
证明:.
求曲线y=x2,直线y=x,y=3x围成的图形的面积.
若的展开式的二项式系数和为128.(Ⅰ)求的值; (Ⅱ)求展开式中的常数项;(Ⅲ)求展开式中二项式系数的最大项.
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。