如图,小明想测量学校旗杆AB的高度,他采用如下方法:先将旗杆上的绳子垂到地面,还多1米,然后将绳子下端拉直,使它的末端刚好接触地面,测得绳子下端C离旗杆底部B点5米,请你计算一下旗杆的高度.
如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.⑴当x为何值时,△APD是等腰三角形?⑵若设BE=y,求y关于x的函数关系式;⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:(1)一个长方体的体积是 cm3;(2)求图2中线段AB对应的函数关系式;(3)求注水速度v和圆柱形水槽的底面积S.
如图,半径为2的⊙E交x轴于A、B,交y轴于点C、D,直线CF交x轴负半轴于点F,连接EB、EC.已知点E的坐标为(1,1),∠OFC=30°.(1)求证:直线CF是⊙E的切线;(2)求证:AB=CD;(3)求图中阴影部分的面积.
纸箱厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的有底无盖纸盒.(1)现有正方形纸板172张,长方形纸板330张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:
②按两种纸盒的数量分,有哪几种生产方案?(2)若有正方形纸板112张,长方形纸板张,做成上述两种纸盒,纸板恰好用完.已知100<<110,则的值是 .
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=40m,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了100m到达B处,测得∠CBN=70°.求河流的宽度CE(精确到1m).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin 70°≈0.94,cos70°≈0.34,tan70°≈2.75).