已知函数.(Ⅰ) 求的最小值及相应的值;(Ⅱ) 解关于的不等式:.
已知数列和满足:,其中为实数,为正整数.(1)对任意实数,求证:不成等比数列;(2)试判断数列是否为等比数列,并证明你的结论.(3)设为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.
如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置.(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.
已知椭圆,、是椭圆的左右焦点,且椭圆经过点.(1)求该椭圆方程;(2)过点且倾斜角等于的直线,交椭圆于、两点,求的面积.
如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求直四棱柱的侧面积和体积;(2)求证:平面.