已知命题p:;命题q:函数有意义.(1) 若为真命题,求实数x的取值范围;(2) 若为真命题,求实数x的取值范围.
如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②③求点G的横坐标的取值范围.
设是定义在R上的偶函数,其图象关于直线对称,证明是周期函数.
在直角坐标平面中,的两个顶点分别的坐标为,,平面内两点同时满足下列条件:①;②;③∥(1)求的顶点的轨迹方程;(2)过点的直线与(1)中轨迹交于两点,求的取值范围
如图所示,B(– c,0),C(c,0),AH⊥BC,垂足为H,且.(1)若= 0,求以B、C为焦点并且经过点A的椭圆的离心率;(2)D分有向线段的比为,A、D同在以B、C为焦点的椭圆上,当 ―5≤≤ 时,求椭圆的离心率e的取值范围.
设,、分别为轴、轴上的点,且,动点满足:.(1)求动点的轨迹的方程;(2)过定点任意作一条直线与曲线交与不同的两点、,问在轴上是否存在一定点,使得直线、的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.