袋子和中装有若干个均匀的红球和白球,从中摸出一个红球的概率是,从中摸出一个红球的概率为.(1)从中有放回地摸球,每次摸出一个,共摸4次.①恰好有2次摸到红球的概率;②第一次、第三次摸到红球的概率.(2)若、两个袋子中的球数之比为4,将、中的球装在一起后,从中摸出一个红球的概率是,求的值
(本小题满分10分)选修;不等式选讲 设函数. (1)解不等式; (2)求函数的最小值.
. 给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为. (1)求椭圆的方程及其“伴随圆”方程; (2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长; (3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:。
. 已知函数. ⑴若,求曲线在点处的切线方程; ⑵若函数在其定义域内为增函数,求正实数的取值范围;
调查某初中1000名学生的肥胖情况,得下表:
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。 (1)求的值; (2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名? (3)已知,,肥胖学生中男生不少于女生的概率。
(本小题满分12分)下图是一几何体的直观图、主视图、俯视图、左视图. (1)若为的中点,求证:面; (2)求A到面PEC的距离;