数列对任意,满足.(1)求数列通项公式;(2)若,求的通项公式及前项和.
已知 a , b , c 分别为 △ A B C 三个内角 A , B , C 的对边, c = 3 a sin C - c sin A . (Ⅰ)求 A ; (Ⅱ)若 a = 2 , △ A B C 的面积为 3 ,求 b , c .
设集合 P n = { 1 , 2 , . . . , n } , n ∈ N * .记 f ( n ) 为同时满足下列条件的集合 A 的个数: ① A ⊂ P n ;②若 x ∈ A ,则 2 x ∉ A ;③若 x ∈ C P x A ,则 2 x ∉ C P x A . (1)求 f ( 4 ) ; (2)求 f ( n ) 的解析式(用 n 表示).
设 ζ 为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时, ζ = 0 ;当两条棱平行时, ζ 的值为两条棱之间的距离;当两条棱异面时, ζ = 1 . (1)求概率 P ( ζ = 0 ) ; (2)求 ζ 的分布列,并求其数学期望
已知实数 x , y 满足: x + y < 1 3 , 2 x - y < 1 6 ,
求证: y < 5 16 .
在极坐标中,已知圆 C 经过点 P ( 2 , π 4 ) ,圆心为直线 ρ sin ( θ - π 3 ) = - 3 2 与极轴的交点,求圆 C 的极坐标方程.