如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H(Ⅰ)设EF中点为,求证:O、、B、P四点共圆(Ⅱ)求证:OG =OH.
已知函数. (Ⅰ)求在处的切线方程; (Ⅱ)求的单调区间; (Ⅲ)若,求证:.
已知. (Ⅰ)当时,判断的奇偶性,并说明理由; (Ⅱ)当时,若,求的值; (Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表: (Ⅰ)由表中数据直观分析,节能意识强弱是否与人的年龄有关? (Ⅱ)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (Ⅲ)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
已知的内角A、B、C所对的边为, , ,且与所成角为. (Ⅰ)求角B的大小; (Ⅱ)求的取值范围.
如图,在三棱柱中,侧棱底面,,为的中点,. (Ⅰ)求证://平面; (Ⅱ)设,求四棱锥的体积.