已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
(本小题满分12分)已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若p是q的必要而不充分条件,求实数m的取值范围.
(本小题满分13分)已知函数的图象过点(1, -4),且函数的图象关于y轴对称.(1) 求m、n的值及函数的极值;(2) 求函数在区间上的最大值。
(本小题满分13分)已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.(1)求椭圆C的标准方程;(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
各项均为正数的数列{}的前项和为,且点在函数的图象上,(1)求数列{}的通项公式;(2)记求证: