如图,抛物线与轴交于两点,与轴交于点.(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;(2)经探究可知,与的面积比不变,试求出这个比值;(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.(1)求b,c的值.(2)结合函数的图象探索:当y>0时x的取值范围.
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.
某中学举行“中国梦•我的梦”演讲比赛.小明和小红都想去,于是老师制作了三张形状、大小和颜色完全一样的卡片,上面分别标有“1”,“2”,“3”,小明从这三张卡片中随机抽取一张,记下数字后放回,小红再从这三张卡片中随机抽取一张并记下数字,谁抽取的数大就谁去,若两个数一样大则重新抽.这个游戏公平吗?请用树枝状图或列表的方法,结合概率知识给予说明.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)画出△AOB绕点O逆时针旋转90°后得到的△A1OB1.(2)填空:点A1的坐标为 .(3)求出在旋转过程中,线段OB扫过的扇形面积.