在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
已知函数(m,n为常数,…是自然对数的底数),曲线在点处的切线方程是.(1)求m,n的值;(2)求的单调区间;(3)设(其中为的导函数),证明:对任意,.
已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.(1)若函数f(x)恰有一个零点,证明:aa=ea-1;(2)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.
记公差不为0的等差数列的前项和为,,成等比数列.(1)求数列的通项公式及;(2)若,n=1,2,3,…,问是否存在实数,使得数列为单调递减数列?若存在,请求出的取值范围;若不存在,请说明理由.
在△ABC中,a,b,c分别是内角A,B,C的对边,.(1)若,求的值;(2)若是边中点,且,求边的长.
已知函数f (t)=log2(2-t)+的定义域为D.(1)求D;(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.