设函数,其中向量,,且函数的图象经过点.(1)求实数的值; (2)求函数的最小值及此时的值的集合.
(本小题满分12分)如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为. (Ⅰ)求的值; (Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
(本小题满分12分)如图,三棱柱中,,,平面平面,与相交于点. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图), (Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值; (Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
(本小题满分12分)已知为等差数列,且满足,. (Ⅰ)求数列的通项公式; (Ⅱ)记的前项和为,若成等比数列,求正整数的值.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点. (Ⅰ)写出曲线的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.