设函数,其中向量,,且函数的图象经过点.(1)求实数的值; (2)求函数的最小值及此时的值的集合.
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为 (1)求椭圆C的方程; (2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.
如图,四边形与均为菱形,设与相交于点,若,且. (1)求证:; (2)求二面角的余弦值.
已知数列、满足,且,其中为数列的前项和,又,对任意都成立。 (1)求数列、的通项公式; (2)求数列的前项和
在中,分别是内角的对边,且,若 (1)求的大小; (2)设为的面积, 求的最大值及此时的值.
已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点. (1)求椭圆的方程; (2)求的取值范围; (3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.