一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;(1)根据图中信息,说明图中点(2,0)的实际意义;(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
如图,在平面直角坐标系中,菱形 ABCD 的边 AB 在 x 轴上,点 B 坐标 ( − 3 , 0 ) ,点 C 在 y 轴正半轴上,且 sin ∠ CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 ⩽ t ⩽ 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S .
(1)求点 D 坐标.
(2)求 S 关于 t 的函数关系式.
(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B 、 C 、 Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.
为了落实党的“精准扶贫”政策, A 、 B 两城决定向 C 、 D 两乡运送肥料以支持农村生产,已知 A 、 B 两城共有肥料500吨,其中 A 城肥料比 B 城少100吨,从 A 城往 C 、 D 两乡运肥料的费用分别为20元 / 吨和25元 / 吨;从 B 城往 C 、 D 两乡运肥料的费用分别为15元 / 吨和24元 / 吨.现 C 乡需要肥料240吨, D 乡需要肥料260吨.
(1) A 城和 B 城各有多少吨肥料?
(2)设从 A 城运往 C 乡肥料 x 吨,总运费为 y 元,求出最少总运费.
(3)由于更换车型,使 A 城运往 C 乡的运费每吨减少 a ( 0 < a < 6 ) 元,这时怎样调运才能使总运费最少?
如图,在 Rt Δ BCD 中, ∠ CBD = 90 ° , BC = BD ,点 A 在 CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF ⊥ EA ,交 CD 所在直线于点 F .
(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC − DE = 2 2 DF .
(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC 、 DE 与 DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.
某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.甲、乙两车间各自加工大米数量 y (吨 ) 与甲车间加工时间 x (天 ) 之间的关系如图(1)所示;未加工大米 w (吨 ) 与甲加工时间 x (天 ) 之间的关系如图(2)所示,请结合图象回答下列问题:
(1)甲车间每天加工大米 吨, a = .
(2)求乙车间维修设备后,乙车间加工大米数量 y (吨 ) 与 x (天 ) 之间函数关系式.
(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?
为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:
(1)直接写出 a 的值, a = ,并把频数分布直方图补充完整.
(2)求扇形 B 的圆心角度数.
(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?