已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)求的面积;(2)当t为何值是,△PBQ是直角三角形?(3)设四边形APQC的面积为y(),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是面积的三分之二?如果存在,求出t的值;不存在请说明理由.
解方程:.
先化简,再求值:,其中.
计算:.
已知抛物线交轴于点和点,交轴于点.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点是抛物线上位于直线上方的动点,过点分别作轴、轴的平行线,交直线于点,,当取最大值时,求点的坐标;
(3)如图(2),点为抛物线对称轴上一点,点为抛物线上一点,当直线垂直平分的边时,求点的坐标.
古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段是的直径,延长至点,使,点是线段的中点,交于点,点是上一动点(不与点,重合),连接,,.
(1)求证:是的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.