已知函数(Ⅰ)若曲线在点处的切线与直线平行,求出这条切线的方程;(Ⅱ)若,讨论函数的单调区间;(Ⅲ)对任意的,恒有,求实数的取值范围.
如图,为圆的直径,点在圆上,已知∥,,,。直角梯形所在平面与圆所在平面互相垂直。(Ⅰ)求证:平面平面;(Ⅱ)求平面与平面所成角的余弦值;(Ⅲ)在上是否存在一点,使∥平面? 若不存在,请说明理由;若存在,请找出这一点,并证明之
三角形的三个内角、、的对边的长分别为、、,有下列两个条件:(Ⅰ)、、成等差数列;(Ⅱ)、、成等比数列。现给出三个结论:①;②;③.请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之
为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?(Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望。
已知函数(1)当时,求不等式的解集(2)若关于的不等式的解集为R,求实数的取值范围(3)当时,若在内恒成立,求实数b的取值范围。
已知正数满足,求的最小值有如下解法:解:∵且.∴ ∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法