如图,在直角坐标系中,点D在y轴上,四边形ABCD是等腰梯形,AB∥CD。已知, DO⊥AB, OE⊥BC,E、O分别为垂足,BC="BO" ,O为坐标原点。(1) 求证:DO=EO(2) 已知:C点坐标为(4 , 8),①求等腰梯形ABCD的腰长;②问题探究:在这个坐标平面内是否存在点F,使以点F、D、O、E为顶点的四边形是菱形?若存在,请求出所有符合要求的F点的坐标,并说明理由;若不存在,请说明理由。
甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?
先化简,再求值:,其中.
解不等式组:
如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。
如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:=CG·CE.