在△ABC中,已知cos A=.(1)求sin2-cos(B+C)的值;(2)若△ABC的面积为4,AB=2,求BC的长.
如图,直三棱柱(侧棱垂直于底面)中,,点是棱的中点,且.(1)求证:;(2)求直线与平面所成角的正弦值.
直线l过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值.
椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且. (1)求抛物线的方程; (2)过点作直线交抛物线于,两点,求证: .