如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(1)求证:NC∥平面MFD;(2)若EC=3,求证:ND⊥FC;(3)求四面体NFEC体积的最大值.
(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:
(1)根据频率分布直方图估计这组数据的众数与平均数; (2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?
(本小题满分12分)已知圆和定点,由圆外一点向圆引切线,切点为,且满足. (1) 求实数间满足的等量关系; (2) 求线段长的最小值; (3) 若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程.
(本小题满分12分)在三棱锥中,,,点在棱上,且. (Ⅰ)试证明:; (Ⅱ)若,过直线任作一个平面与直线相交于点,得到三棱锥的一个截面,求面积的最小值; (Ⅲ)若,求二面角的正弦值.
(本小题满分12分)已知点到直线的距离相等,求得值.
(本小题满分12分)在2015年全运会上两名射击运动员甲、乙在比赛中打出如下成绩: 甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8; 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1; (1)用茎叶图表示甲、乙两人的成绩;并根据茎叶图估计他们的中位数; (2)已知甲、乙两人成绩的方差分别为与,分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较好,哪位运动员的成绩比较稳定.